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Abstract. The radial part of many scattering waves can be expressed in terms of Whittaker 
functions M,,+ and/or W,,,, and integrals over products of these waves are required in 
the analysis of many processes. Integrals over n Whittaker functions of the first kind are 
generalised hypergeometric series which often have variables outside the range of conver- 
gence, or are such that the series are slowly converging. Using matrix series for the 
Whittaker functions, analytic continuations of the resulting generalised hypergeometric 
series have been obtained which always result in convergent series apart from a few special 
cases involving degeneracy. In addition, an asymptotic matrix series for the integral from 
some radius R to infinity of products of Whittaker functions of the second kind is given. 
As an example, the Dirac-Coulomb matrix elements arising in bremsstrahlung are 
evaluated. 

1. Introduction 

Radial matrix elements that occur in the analysis of many scattering processes in 
physics consist of integrals over products of two or three oscillatory functions. Many 
of these matrix elements arise from large angular momentum portions of the incident 
and outgoing waves and hence can be approximated by regular Whittaker functions 
MK,+,. Other matrix elements involve penetrating orbits and the integral from the origin 
to some radius R may have to be done numerically. However, in the portion of the 
integral outside the range of all non-Coulomb forces, the scattering waves can be 
expressed in terms of the Whittaker functions of the second kind WK,+,. 

Complete integrals over products of Whittaker fun'ctions of the first kind result in 
generalised hypergeometric series. For example, integrals over two Whittaker functions 
produce one of the Appell functions, F2, while integrals over three Whittaker functions 
of the first kind produce a triply infinite series known as the Lauricella function LA. 
In many cases of interest, the variables in these series (combinations and ratios of the 
momenta in the problem) are such that the series are not convergent. A number of 
analytic continuations of the Appell F2 functions are known (Erdelyi 1953, Gargaro 
1970, Gargaro and Onley 1970, Sud and Wright 1976), and some continuations of the 
Lauricella function LA are known (Rozics and Johnson 1964). However, the usefulness 
of these analytic continuations are limited to special cases. 

In this paper we use a first-order matrix differential equation for the Whittaker 
functions and write integrals over the solutions of this equation as a generalisation of 
the gamma function (Onley 1972, Sud et a1 1976) to obtain a new analytic continuation 
of series of the Appell or Lauricella type. A key ingredient is a partial differential 
equation obeyed by the generalised gamma function (Wright er a1 1977). 
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The matrix series form of the Whittaker functions of the first kind can be integrated 
from the origin to infinity to obtain a matrix series representation of the integral. In 

2, we give a general technique whereby these matrix series are evaluated in kinematic 
domains where they are convergent and the results are then transformed by a matrix 
operator back to the desired kinematic values. This two-step process permits the 
evaluation of the complete integral over n Whittaker functions of the first kind. At 
the end of 0 2 we give an asymptotic matrix series for integrals over products of 
Whittaker functions of the second kind from some distance R to infinity. In § 3, we 
apply our technique for the complete integral to the evaluation of Dirac-Coulomb 
radial integrals that arise in the calculation of high energy electron bremsstrahlung 
from the atomic nulceus. 

2. Evaluation of radial integrals 

Onley (1972) and co-workers (Sud et a1 1976) have investigated the properties of 
solutions to the first-order matrix differential equation 

d W l d r =  ( d l r - 9 3 )  W (1) 
where d and $43 are n x n constant matrices and W(d,  9; r) is an n x n  array of 
functions which can be written as 

W(d ,  93; r )  = Un(2ip,,r)O.. .O U2(2ip2r)0 U1(2iplr) (2) 
where each U, is a 2 x 2 matrix of functions which satisfy (1) with the 2 x 2 matrices 
Ai and Bi, pi is the momentum variable for each function and 

d = A , , O I ~ , , ~ ~ + I ~ O A , , _ ~ O I ~ , ~ ~ + .  . .+I2,,-2OA, 

a =B,,012,, -,+...+ I,,-,OB,. 
(3) 

In general the matrices d and 9 do not commute, so they cannot both be 
diagonalised simultaneously. It is useful, however, to diagonalise either d or 9. 
Solutions with diagonal d or 9 will be denoted by superscript (A) or ( B ) .  The 
solution U ( A )  and U ( B )  and some of their more useful properties are given in appendix 
1. In the A-diagonal representation of (l),  a power series solution is easily obtained, 
while in the B-diagonal representation an inverse power series solution is convenient. 
Both of these series are given in appendix 2 and are well defined apart from cases 
with degenerate eigenvalues for A or B, respectively. An important property of solutions 
to equation (1) is 

W(A, B ;  x)  = W(A+ a, B +  b ;  x)  (4) 
x a  e-bx 

where A + a means A + al,,, and I,, is the n x n unit matrix. 
Onley and co-workers defined integrals over the solutions of equation (1) by writing 

( 5 )  

where the symbol (0) indicates that finite order poles have been subtracted out at the 
origin. The formal definition of the matrix gamma function is given in Onley (1972) 
and Sud et aZ(1976). The matrix gamma function defined in equation (5) has the very 
useful property: 

cc 

r (a  + I ,  9) = J(o, w(&, 9; r )  d r  

spr(sB, a) = ar(d+ 1 , ~ ) .  (6) 
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In the analysis of scattering processes we require both integrals over all space 
defined by ( 5 )  and integrals from some distance R to infinity defined by 

T ( d +  1 , 9 ;  R )  = W(& 9; r) dr. 1." (7) 

We refer to this latter integral as the incomplete matrix gamma function, and it will 
prove to be useful when using asymptotic series for the integrand. 

For non-penetrating orbits we require integrals over n regular Whittaker functions 
of the first kind which can be represented by the first column of W ( d ,  9; r). Thus, 
we consider the vector gamma function defined by 

r0(dA'+  1, 9 ( A ) + A )  = lo* e-"W(d, 93; r) d r  

where we have included exp(-Ar) for convenience. The n-element vector of the 
functions W is given by 

~ ( d ,  9; r) = u'R'o.. .O U\"' (9) 

where U!A' represents the first column of the Whittaker functions given in equation 
(Al.11). Using the power series of equation (A2.2) we can write 

where the normalisation N = ( 2 i ~ , , ) ~ n .  . . (2ip2)p2(2ipl)pl and Vm can be obtained from 
the recursion relation 

where ( Vo)i = 
the singly infinite matrix series 

Substituting (10) into (8) and integrating term by term we obtain 

r ( d l l + m + l ) V m  ro(d'")+ 1, 9 3 ( A ) +  A)  = N ~ d ~ , + m + l  ' 
m = l  

The convergence of this series is not easily investigated directly and the results look 
puzzling in the limit A + 0. However, this apparent difficulty can easily be remedied 
by extracting a scalar factor from B by writing B'= 93 - i (pl  +p2+. . .+pn)Zn. Now 
using 93' in ( l l ) ,  the series in (12) becomes 

cc r(d, ,  + m + 1) V:, ro(.dA)+ 1, 933'A'+A) = N 
[A+i( p1 + p 2 + .  . . +p,,)]dll+m+l 

where letting A + 0 causes no apparent problems, and the prime on V indicates that 
9' is to be used in (1 1). In order to integrate a power series term by term to infinity, 
we require an exponential factor which can always be extracted from 93. 

To examine the convergence of the series in equation (13) we first consider a 
particular case, namely the integral over only two Whittaker functions of the first kind, 
i.e. let W = U$"'@ U!"'. Clearly the resulting I' vector has four elements which can 
be written as 
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Expressing the M in terms of by means of equation ( A l . l ) ,  each of these elements 
can be integrated term by term and is proportional to an Appell function F2 given by 
the doubly infinite series 

where the parameter values for the first element are 

a = /&I + p2+ 1 b 2  = 2 ~ 2  bl = 2cL1 

U 2  = p2 - K 2  - 4  U1 = - K I  - 4  
and the variables for all four elements are 

x = 2 i p ~ / [ A + i ( p 1 + p J l  Y = 2iPI/[A + i(Pl +P2)1. (16) 

This series is absolutely convergent for 1x1 + lyl< 1 .  
It is straightforward, but tedious, to confirm that the singly infinite matrix series 

given in (13) generates the four Appell series coming from (14). Therefore, we can 
examine the convergence properties of the matrix series by using the known convergence 
properties of the Appell F2-type series. In our 2 x 2  example, Ixl+lyl= 
()2pll+ 12p2/)/lA+ i( p1 + p J l  and is not convergent for A = 0. In the n x n case, each 
element of the gamma vector will be an n-dimensional series of the Appell F2 structure. 
For example, for n = 3 each element is a Lauricella series given by 

L A ( U ,  4, a 2 9  a,, b 3 ,  k?, b1; x, Y ,  z )  

and the convergence condition is 1x1 + lyl+ /zI < 1. For our case, this would be 1x1 + IyI + 
Izl =(/2pII+/2p21+12p31)//A+i(pl+p2+p~)l and again would not be convergent for 
A = 0. This pattern clearly continues for the n x n case. However, if we choose the 
parameter A in (13 )  sufficiently large, then clearly IA+i(pl+. . . + p n ) l > >  
/2pnJ + )2pn-,I + . . . + 12p,I and the matrix series in (12) is rapidly convergent. For this 
step, the parameter A can be complex, but in order to obtain the result with A = 0, we 
will need to choose a A which is real as will be shown below. 

Our procedure is to first choose a sufficiently large real A to easily evaluate the 
vector gamma function ro(d+ 1,  W + A )  of (13 ) .  In order to obtain the gamma vector 
at A = O ,  we make use of the fact that the gamma vector obeys a first-order matrix 
differential equation in A. For our case we require only a simple version of the general 
result (Wright et ul 1977) for which we give a brief derivation. 
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Differentiating equation (8) with respect to A we obtain =lox -r e-"'W(d, 3; r)  dr. 
d r ( d + l ,  B + A )  

dA 

Using the fundamental property of the matrix gamma function given in equation ( 6 ) ,  
we can rewrite the right-hand side as follows: 

Unlike the more general case discussed by Wright et a l  (1977), this first-order matrix 
differential equation can be directly integrated to obtain 

r( .dB)+i ,  @ B ) + ~ o - ~ ) =  s ( x ) r ( d ( B ) + l ,  BiB)+Ao) (20) 
where we have written A = A,- x and the n x n matrix operator S(x) is given by 

X 

S(x) = 1 T,x' 
f = O  

where 

To = I,, 

For large I ,  the recurrence relation for Tf becomes diagonal, and one sees that the 
convergence of the series in equation (21) reduces to that of a geometrical series. The 
conditions for the matrix series S to converge in all of its elements can be written as 

Since in the B-diagonal form, the Brit are * combinations of the {2ip,}, we see that if 
A. is real then the series in equation (21) is absolutely convergent for all x such that 
1x1 s IAol. In particular, choosing x = A. allows the evaluation of the integral given in 
equation(8) for A = 0 if none of the 9,, vanish, i.e. 

I'(.dA'+ 1, = z A B S ( A 0 ) (  (eAB)-lr(dA)+ 1, .93(A)+Ao) (24) 
where the (eAB transforms the n-element vector of Whittaker functions from a B- 
diagonal to A-diagonal basis and is obtained from the 2 x 2 matrix following ( A l . l l )  
by the procedure given in (3) .  The gamma vector on the right-hand side can be 
evaluated with the series given in (13), while the n x n matrix operator S can be 
evaluated by the series given in (21). 

The result given in (24) works for all non-penetrating integrals, but as noted in the 
introduction some waves do penetrate, so we now turn to evaluating the integrals from 
some radius R to infinity. That is, we evaluate the incomplete gamma function defined 
in (7 ) .  In the B-diagonal representation we can write 

r,(dB)+ 1, R )  = lRm W m ( d ( B ) ,  9(B);  r)  d r  (25) 

where W, = U, 0 U,-,@. . .O U1 and the U are given in (A1.9). Writing the asymptotic 
matrix series for W given in (A2.4) of appendix 2 for our case we find 

w ( d ( ~ ) ,  % ( B ) ;  r )  = D m r 2 - m  e-58" (26) 
m = O  
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where si? and 9 are given in terms of the 2 x 2 A and B matrices in (A1.7) by (3), and 
the normalisation matrix X = N,, 0 N,,-I 0. . .O N ,  where 

N, = (2ip,) (27) 

The notation d means the diagonal part of the SP matrix. Inserting (26) into (25), 
and integrating term by term we obtain 

r,(.dB)+ 1, B ( ~ ) ;  R )  = 2 o,r(d+ 1 - m ;  W R ) ~ - ( ~ + ~ - ~ ) N  . (28) 
m=O 

Each element in (28) is diagonal apart from the D, matrix which is defined by Do = I,, 
and the recursion scheme given in (A2.5) and (A2.6). 

The behaviour of the matrix series in (21) can be investigated by standard techniques. 
It is not surprising, perhaps, to find that the criterion for using this matrix asymptotic 
series to represent the integral from R to a3 is that 12ipiR1 >> 1, for i = 1, n. This is just 
the union of the criteria that each function in the integrand be well represented by an 
asymptotic series at the point 2ip,R. 

3. The evaluation of Dirac-Coulomb radial integrals 

To illustrate the power of this technique consider the radial integrals arising in the 
analysis of bremsstrahlung accompanying high energy electron scattering from the 
nucleus (Sud et a1 1976). Using matrix notation, the integrand required for the 
bremsstrahlung integrals is 

W(si?, 9; r) = U3(2iwr)0 U2(2ip2r)0 U1(2iplr) (29) 

where the regular functions are given by 

and 

\2 y,(2 y, + 1 )  
- I  

where 

and yj = ( K: - qj = aZEj /p j  and the Dirac quantum number K~ is a non-zero 
integer. The fine structure constant is denoted by a, E j ( p j )  are the incident and final 
electron energy (momentum) and w = E l  - E2 is the energy of the emitted photon. 

By writing the spherical Bessel function in terms of the Hankel function, the integral 
over each element of W in (29) can be expressed as a sum of L Appell F2 series, and 
the use of more conventional analytic continuations permit their evaluation (Sud et al 
1976). Each Appell series is expressed as a sum of three doubly infinite series designated 
by Q,, Q2 and Q3. These series converge well for typical kinematics of importance to 
electron scattering from the nucleus, but when the Q are added together and the 
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spherical Bessel function is extracted from the spherical Hankel function there can be 
substantial numerical cancellation. 

To illustrate this point consider the integral 

I L  = ~ o ~ j ~ ( ~ r ) ~ , ( p , r ) ~ * ( p ~ r ) r 2  dr  

where fK, the large Dirac-Coulomb radial function, is real and is defined explicitly in 
terms of the Whittaker functions by Sud er a1 (1976). Integrals of this form enter all 
inelastic electron scattering processes from the nucleus. The use of the Appell series 
to evaluate this integral suffers extensive numerical cancellations for large L as shown 
in table 1 where we compare the Appell series value to the value calculated with (24) 
which has no numerical difficulties. The precision can be confirmed by checking 
recurrence relations over the label L which follow from equation (A1.12), and the 
values calculated with (24) are good to more than 11 digits. 

Table 1. Values of the radial integral I ,  calculated with the Appell series (a )  and with the 
matrix series (b) for different L values. The other parameters are: E,  = 100.511 MeV, 
w = 20 MeV, Z = 92, K~ = 10 and K~ = 10. The length units are MeV-’ and all the integrals 
are multiplied by a factor of 10’. The underlined digits are wrong and demonstrate loss 
of precision when using the Appell series. 

L 1 7 14 17 

a -0.481 680 04 
b -0.130 771 81 0.994 803 00 0.121 263 61 -0.747 278 40 

-0.130 771 81 0.994 803 01 0.121 289 01 

In calculating the Coulomb correction to the radiation tail accompanying elastic 
scattering from the nucleus, we have evaluated the electric and magnetic multipoles 
radial integrals for L values up to 30, and for K values from 1 to 50 and have found 
no numerical difficulties with the use of (24), although we did have to return to A = 0 
in a number of steps. When one or more elements of B,i is small the operator S in 
(21) needs to be calculated at A0/2 to obtain r at Ao/2, then the process is repeated 
at A0/4, etc. Once Ao/2n becomes comparable to the small elements of Bi, the remaining 
distance can be covered in one step. We find that about 15 to 20 Zeno-like steps give 
a final integral good to about 11 significant figures. 

In conclusion, we have found a general method of evaluating radial integrals for 
scattering problems. For non-penetrating orbits the complete integral can be evaluated 
by means of (24), while for penetrating orbits the integral from some radius R to 
infinity can be evaluated by (26). We have demonstrated that this technique works 
for the notoriously difficult Dirac-Coulomb radial integrals and believe that it will 
work equally well for other radial integrals arising in scattering problems, particularly 
in cases where the long-range character of the Coulomb field causes difficulties. 
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Appendix 1 

The Whittaker function MK,,(x) is given in terms of the hypergeometric series lFl by 
(Slater 1960) 

( A l . l )  M,,,(x) = e-x'2x,+klFl(p - K +f, 2 p  + 1 ;  x )  

where 

(A1.2) 

The second Whittaker function WK,,(x) can be defined in terms of MK,,(x) by the 
relation (Slater 1960) 

(A1.3) 

In addition, W,,,(x) has an asymptotic series expansion given by 

W K , , ( x ) = e - " ~ 2 x K 2 F o ( f + p - ~ K , f - p - ~ ;  - l /x )  (A1.4) 

where 

The Whittaker functions are solutions to an equation of the form of ( l ) ,  

where 

(Al .5)  

(A1.6) 

(A1.7) 

For scattering waves the argument of the Whittaker function is x = 2ipr. The matrix 
of Whittaker functions U ( B )  satisfying (A1.6) is 

(Al.8) 

or 

( E ) - -  1 W-K,+( -x) exp( -imK) - ( r * + + + W K . , ( X )  
U ,  - x l / 2  

where E = sgn(Im(x)) and the subscripts 0 and CO denote power series and asymptotic 
series solutions respectively. Using (A1.3) we can write UbB' = U Z ' T ,  where the matrix 
T is given by 

( A l .  10) 

r (2P  + 1 )  ( - p  - K - f ) r ( -2p  + 1 )  
( p  - K -#yp - K + f )  

1 - ( 2 ~ + 1 )  exp[ i r (p-K-f ) ]  1 - ( - 2 ~ + 1 )  e x p [ - i . r r ( p + ~ + f ) ]  
r(p + K +$) r( - p  + K + t )  

The array of Whittaker functions of the second kind given in (A1.9) is generated by 
the matrix asymptotic series in (A2.4). 
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In order to make use of the matrix power series solution, we transform (A1.6) to 
the A-diagonal representation by writing U(A’ = CABU(B) where 

( A l . l l )  

and 

) C A B = -  p - K - f  p + K + +  

2 p  - ( p - K - - - l )  p - K - f  . l (  2 

The A and B matrices in A-diagonal form are 

K + i  p + K f i  

p ( p - K - i  - ( K + f )  

Ai.i=(: -:) B(A) = 2 

The array of solutions in equation ( A l . l l )  are generated by the matrix power series 
given in (A2.2) of appendix 2.  

The A-diagonal solution also has a useful recursive property on the label p. If we 
designate the first column of ( A l . l l )  by U:) ,  then by manipulating the recursion 
relations of the Gauss ,F ,  functions, one can show that 

ufi, = (C:’/x - 0:) (A1.12) 

where 

and 

0 - 2 p ( K  + p +$) ( 
2 p + l  0:’ = 

( K  + /L + $)( K - p + t) (2p + 2) (  K - /A + f) 2 K  (2p + 1 )  

The second column U:’ of ( A l . l l )  is obtained from the first by the operation 
U f )  = KU?; where K = (7 A) interchanges elements. Therefore 

U:i, = ( C:’/X - 0:)) Uf’ (A1.13) 

where 

c f )  = KC?; K and 0:’ = KDFLK. 

Appendix 2 

Consider the first-order matrix differential equation 
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where A, B and W are n x n matrices. In a representation where the A matrix is 
diagonal, denoted by a superscript ( A ) ,  a power series to (A2.1) is easily obtained 
(Sud et a1 1976, Onley 1972): 

00 

WiA'(A, B ;  x )  = V,,,X'"+~ 
m=O 

(A2.2) 

where 

v, = I" 

and 

{ v , } ~  = { - B ( ~ ) V , , , - ~ } ~ / ( A ~ - A ~ ~ + ~ ) .  (42.3) 
A scalar to a diagonal matrix power is to be interpreted as a diagonal matrix with 
elements 

An asymptotic series solution to equation (A2.1) can be given in a B-diagonal 
representation. It is (Sud et a1 1976, Onley 1972) 

where Do = I,, and the diagonal matrix A consists of the diagonal elements of the A 
matrix. Defining the matrix A = A-,& which only has non-diagonal elements, the 
recursion relation for the matrices Dm can be written for i # j as 

{ ( A + m - l ) D m ~ l ) i j + ( A i ~ - A , ) { D , , , ~ l } ,  
Bii - Bj { D m l i j  = 

and for i = j 

( 4 2 . 5 )  

Note that these two equations in Sud et a1 (1976) contain sign errors. 
Both the power series solutions and the asymptotic series solutions can be 

transformed to either the B-diagonal or A-diagonal representation as need arises. 
Furthermore, since WO and W, represent the general solution to the differential 
equation, then WO= W,T where T is an n x n constant matrix which depends on the 
particular problem under consideration. 
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